Enhancement of the quantum dot photoluminescence using transfer-printed porous silicon microcavities

Journal of Physics Conference Series(2020)

引用 1|浏览2
暂无评分
摘要
Enhancement of the photoluminescence signal intensity from organic and inorganic fluorophores increases the sensitivity of operation of optical sensors, detectors, and photonic diagnostic assays. Here, we have engineered and compared optical and fluorescence-enhancing properties of two types of one-dimensional porous silicon photonic crystals: a transfer-printed microcavity based on the freestanding photonic crystal and a conventional "one-piece" microcavity created on a monocrystalline silicon substrate. Comparative analysis of the eigenmodes and the photonic bandgaps of both types of microcavities demonstrated a high quality of transfer-printed microcavities and good correlation of their reflection spectra with the spectra of "one-piece" microcavities. Moreover, embedding of a highly concentrated solution of quantum dots (QDs) in the eigenmode localization region of transfer-printed microcavity was followed by three-fold reduction of the full-width-at-half-maximum of their luminescence spectrum at the microcavity eigenmode wavelength, thus confirming a weak coupling regime of QD exciton and microcavity eigenmode interaction and significant enhancement of QD luminescence within the microcavity.
更多
查看译文
关键词
quantum dot photoluminescence,silicon,transfer-printed
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要