Mathematical Model Of Constitutive Relation And Failure Criteria Of Plastic Concrete Under True Triaxial Compressive Stress

MATERIALS(2021)

引用 3|浏览3
暂无评分
摘要
To establish the mathematic model of the constitutive relation and failure criteria of plastic concrete under true triaxial compressive stress, uniaxial compressive strength and true triaxial compressive strength of plastic concrete under three kinds of confining pressures with a size of 150 x 150 x 150 mm(3) and a curing age of 540 days were tested, and the elastic modulus of plastic concrete with a size of 150 x 150 x 300 mm(3) and a curing age of 90 days was tested. Based on the database, under uniaxial compressive stress tests and true triaxial compressive stress tests, the mathematic model of constitutive relation and the failure criteria of plastic concrete were investigated. It was observed that the strength of plastic concrete increased with confining stress. The mathematic model of constitutive relation in the form of the quartic polynomial is in good agreement with measured data. The general equations of failure criteria based on the octahedral stress-space under true triaxial compressive stress in the form of quadratic polynomial are well-fitting with experimental data. The mathematic model of constitutive relation and failure criteria of plastic concrete could provide the basis for a numerical simulation analysis of plastic concrete under true triaxial compressive stress, as well as promote the engineering application of plastic concrete.
更多
查看译文
关键词
plastic concrete, constitutive relation, failure criteria, true triaxial compressive stress, stress-strain behavior
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要