Construction and on-site performance of the LHAASO WFCTA camera

F. Aharonian,Q. An, Axikegu,L. X. Bai,Y. X. Bai,Y. W. Bao,D. Bastieri,X. J. Bi,Y. J. Bi,H. Cai,J. T. Cai,Z. Cao,Z. Cao,J. Chang,J. F. Chang,X. C. Chang,B. M. Chen,J. Chen,L. Chen,L. Chen,L. Chen,M. J. Chen,M. L. Chen,Q. H. Chen,S. H. Chen,S. Z. Chen,T. L. Chen,X. L. Chen,Y. Chen,N. Cheng,Y. D. Cheng,S. W. Cui,X. H. Cui,Y. D. Cui,B. Z. Dai,H. L. Dai,Z. G. Dai, Danzengluobu,D. della Volpe,B. D’Ettorre Piazzoli,X. J. Dong,J. H. Fan,Y. Z. Fan,Z. X. Fan,J. Fang,K. Fang,C. F. Feng,L. Feng,S. H. Feng,Y. L. Feng,B. Gao,C. D. Gao,Q. Gao,W. Gao,M. M. Ge,L. S. Geng,G. H. Gong,Q. B. Gou,M. H. Gu,J. G. Guo,X. L. Guo,Y. Q. Guo,Y. Y. Guo,Y. A. Han,H. H. He,H. N. He,J. C. He,S. L. He,X. B. He,Y. He,M. Heller,Y. K. Hor,C. Hou,X. Hou,H. B. Hu,S. Hu,S. C. Hu,X. J. Hu,D. H. Huang,Q. L. Huang,W. H. Huang,X. T. Huang,Z. C. Huang,F. Ji,X. L. Ji,H. Y. Jia,K. Jiang,Z. J. Jiang,C. Jin,D. Kuleshov,K. Levochkin,B. B. Li,C. Li,C. Li,F. Li,H. B. Li,H. C. Li,H. Y. Li,J. Li,K. Li,W. L. Li,X. Li,X. Li,X. R. Li,Y. Li,Y. Z. Li,Z. Li,Z. Li,E. W. Liang,Y. F. Liang,S. J. Lin,B. Liu,C. Liu,D. Liu,H. Liu,H. D. Liu,J. Liu,J. L. Liu,J. S. Liu,J. Y. Liu,M. Y. Liu,R. Y. Liu,S. M. Liu,W. Liu,Y. N. Liu,Z. X. Liu,W. J. Long,R. Lu,H. K. Lv,B. Q. Ma,L. L. Ma,X. H. Ma,J. R. Mao,A. Masood,W. Mitthumsiri,T. Montaruli,Y. C. Nan,B. Y. Pang,P. Pattarakijwanich,Z. Y. Pei,M. Y. Qi,D. Ruffolo,V. Rulev,A. Sáiz,L. Shao,O. Shchegolev,X. D. Sheng,J. R. Shi,H. C. Song,Yu. V. Stenkin,V. Stepanov,Q. N. Sun,X. N. Sun,Z. B. Sun,P. H. T. Tam,Z. B. Tang,W. W. Tian,B. D. Wang,C. Wang,H. Wang,H. G. Wang,J. C. Wang,J. S. Wang,L. P. Wang,L. Y. Wang,R. N. Wang,W. Wang,W. Wang,X. G. Wang,X. J. Wang,X. Y. Wang,Y. D. Wang,Y. J. Wang,Y. P. Wang,Z. Wang,Z. Wang,Z. H. Wang,Z. X. Wang,D. M. Wei,J. J. Wei,Y. J. Wei,T. Wen,C. Y. Wu,H. R. Wu,S. Wu,W. X. Wu,X. F. Wu,S. Q. Xi,J. Xia,J. J. Xia,G. M. Xiang,G. Xiao,H. B. Xiao,G. G. Xin,Y. L. Xin,Y. Xing,D. L. Xu,R. X. Xu,L. Xue,D. H. Yan,C. W. Yang,F. F. Yang,J. Y. Yang,L. L. Yang,M. J. Yang,R. Z. Yang,S. B. Yang,Y. H. Yao,Z. G. Yao,Y. M. Ye,L. Q. Yin,N. Yin,X. H. You,Z. Y. You,Y. H. Yu,Q. Yuan,H. D. Zeng,T. X. Zeng,W. Zeng,Z. K. Zeng,M. Zha,X. X. Zhai,B. B. Zhang,H. M. Zhang,H. Y. Zhang,J. L. Zhang,J. W. Zhang,L. Zhang,L. Zhang,L. X. Zhang,P. F. Zhang,P. P. Zhang,R. Zhang,S. R. Zhang,S S. Zhang,X. Zhang,X. P. Zhang,Y. Zhang,Y. Zhang,Y. F. Zhang,Y. L. Zhang,B. Zhao,J. Zhao,L. Zhao,L. Z. Zhao,S. P. Zhao,F. Zheng,Y. Zheng,B. Zhou,H. Zhou,J. N. Zhou,P. Zhou,R. Zhou,X. X. Zhou,C. G. Zhu,F. R. Zhu,H. Zhu,K. J. Zhu,X. Zuo

The European Physical Journal C(2021)

引用 9|浏览60
暂无评分
摘要
The focal plane camera is the core component of the Wide Field-of-view Cherenkov/fluorescence Telescope Array (WFCTA) of the Large High-Altitude Air Shower Observatory (LHAASO). Because of the capability of working under moonlight without aging, silicon photomultipliers (SiPM) have been proven to be not only an alternative but also an improvement to conventional photomultiplier tubes (PMT) in this application. Eighteen SiPM-based cameras with square light funnels have been built for WFCTA. The telescopes have collected more than 100 million cosmic ray events and preliminary results indicate that these cameras are capable of working under moonlight. The characteristics of the light funnels and SiPMs pose challenges (e.g. dynamic range, dark count rate, assembly techniques). In this paper, we present the design features, manufacturing techniques and performances of these cameras. Finally, the test facilities, the test methods and results of SiPMs in the cameras are reported here.
更多
查看译文
关键词
on-site
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要