Correlations between cochlear pathophysiology and behavioral measures of temporal and spatial processing in noise exposed macaques

Hearing Research(2021)

引用 6|浏览8
暂无评分
摘要
Noise-induced hearing loss (NIHL) is known to have significant consequences for temporal, spectral, and spatial resolution. However, much remains to be discovered about their underlying pathophysiology. This report extends the recent development of a nonhuman primate model of NIHL to explore its consequences for hearing in noisy environments, and its correlations with the underlying cochlear pathology. Ten macaques (seven with normal-hearing, three with NIHL) were used in studies of masked tone detection in which the temporal or spatial properties of the masker were varied to assess metrics of temporal and spatial processing. Normal-hearing (NH) macaques showed lower tone detection thresholds for sinusoidally amplitude modulated (SAM) broadband noise maskers relative to unmodulated maskers (modulation masking release, MMR). Tone detection thresholds were lowest at low noise modulation frequencies, and increased as modulation frequency increased, until they matched threshold in unmodulated noise. NH macaques also showed lower tone detection thresholds for spatially separated tone and noise relative to co-localized tone and noise (spatial release from masking, SRM). Noise exposure caused permanent threshold shifts that were verified behaviorally and audiologically. In hearing-impaired (HI) macaques, MMR was reduced at tone frequencies above that of the noise exposure. HI macaques also showed degraded SRM, with no SRM observed across all tested tone frequencies. Deficits in MMR correlated with audiometric threshold changes, outer hair cell loss, and synapse loss, while the differences in SRM did not correlate with audiometric changes, or any measure of cochlear pathophysiology. This difference in anatomical-behavioral correlations suggests that while many behavioral deficits may arise from cochlear pathology, only some are predictable from the frequency place of damage in the cochlea.
更多
查看译文
关键词
Spatial release from masking,Modulation masking release,Sensorineural hearing loss,Noise exposure,Nonhuman primate
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要