Investigation Of A Biomass Hydrogel Electrolyte Naturally Stabilizing Cathodes For Zinc-Ion Batteries

ACS APPLIED MATERIALS & INTERFACES(2021)

引用 56|浏览24
暂无评分
摘要
Aqueous zinc-ion batteries (AZIBs) have the potential to be utilized in a grid-scale energy storage system owing to their high energy density and cost-effective properties. However, the dissolution of cathode materials and the irreversible extraction of preintercalated metal ions in the electrode materials restrict the stability of AZIBs. Herein, a cathode-stabilized ZIB strategy is reported based on a natural biomass polymer sodium alginate as the electrolyte coupling with a Na+ preintercalated delta-Na0.65Mn2O4 center dot 1.31H(2)O cathode. The dissociated Na+ in alginate after gelation directly stabilizes the cathodes by preventing the collapse of layered structures during charge processes. The asfabricated ZIBs deliver a high capacity of 305 mA h g(-1) at 0.1 A g(-1), 10% higher than the ZIBs with an aqueous electrolyte. Further, the hybrid polymer electrolyte possessed an excellent Coulombic efficiency above 99% and a capacity retention of 96% within 1000 cycles at 2 A g(-1). A detailed investigation combining ex situ experiments uncovers the charge storage mechanism and the stability of assembled batteries, confirming the reversible diffusions of both Zn2+ and preintercalated Nat. A flexible device of ZIBs fabricated based on vacuum-assisted resin transfer molding possesses an outstanding performance of 160 mA h g(-1) at 1 A g(-1), which illustrates their potential for wearable electronics in mass production.
更多
查看译文
关键词
zinc-ion batteries, flexible devices, hydrogel electrolytes, cathode-stabilized electrolyte, biomass materials
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要