Two-Dimensional Cold Electron Transport For Steep-Slope Transistors

ACS NANO(2021)

引用 15|浏览27
暂无评分
摘要
Room-temperature Fermi-Dirac electron thermal excitation in conventional three-dimensional (3D) or two-dimensional (2D) semiconductors generates hot electrons with a relatively long thermal tail in energy distribution. These hot electrons set a fundamental obstacle known as the "Boltzmann tyranny" that limits the subthreshold swing (SS) and therefore the minimum power consumption of 3D and 2D field-effect transistors (FETs). Here, we investigated a graphene (Gr)-enabled cold electron injection where the Gr acts as the Dirac source to provide the cold electrons with a localized electron density distribution and a short thermal tail at room temperature. These cold electrons correspond to an electronic refrigeration effect with an effective electron temperature of similar to 145 K in the monolayer MoS2, which enables the transport factor lowering and thus the steep-slope switching (across for three decades with a minimum SS of 29 mV/decade at room temperature) for a monolayer MoS2 FET. Especially, a record-high sub-60-mV/decade current density (over 1 mu A/mu m) can be achieved compared to conventional steep-slope technologies such as tunneling FETs or negative capacitance FETs using 2D or 3D channel materials. Our work demonstrates the potential of a 2D Dirac-source cold electron transistor as a steep-slope transistor concept for future energy-efficient nanoelectronics.
更多
查看译文
关键词
graphene, MoS2, Dirac-source, cold electrons, steep-slope transistors, electronic refrigeration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要