A Novel Glycoprotein From Streptomyces Sp. Triggers Early Responses Of Plant Defense

PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY(2021)

引用 7|浏览18
暂无评分
摘要
GP-1, a novel glycoprotein from Streptomyces sp. ZX01 has a plant immunity-inducing effect. GP-1-treated plants exhibited enhanced systemic resistance with a significant reduction in TMV lesions on tobacco leaves, but its antiviral mechanism remains unclear. In this study, early plant defense-related responses, such as Ca2+ influx, callose apposition, oxidative burst, hypersensitive response, programmed cell death, increase in nitric oxide (NO), and stomatal closure, were investigated under GP-1 treatment, and the mechanism of how GP-1 induces viral resistance in Nicotiana benthamiana was studied. Results showed that GP-1 induced [Ca2+](cyt) rapidly in tobacco leaves and suspended cells, followed by reactive oxygen species (ROS) and NO elevation. Transcriptome analysis showed significant differences in expression levels between the GP-1-treated N. benthamiana and the control and showed significantly upregulated and enriched pathways including defense and immune reaction. Similar to typical pathogen-associated molecular patterns, GP-1 induced callose deposition and stomatal closure to form defense barriers against pathogen invasion. The expression of defense-related genes further confirmed the above conclusions. By analyzing transcriptome in N. benthamiana and the contents of salicylic acid (SA) and jasmonic acid (JA), GP-1 enhanced viral resistance of tobacco by improving the SA and JA contents, strengthening plant secondary metabolites activities, promoting systemic accumulation of pathogenesis-related proteins in TMV- inoculated tobacco there by producing antiviral activity.
更多
查看译文
关键词
Pathogen-associated molecular pattern, Transcriptome sequencing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要