Relationships Between Plant Defense Inducer Activities And Molecular Structure Of Gallomolecules

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY(2020)

Cited 9|Views21
No score
Abstract
Plant defense inducers (PDIs) are booming and attractive protection agents designed to immunostimulate the plant to reduce subsequent pathogen colonization. The structure-PDI activity relationships of four flavan-3-ols: Epicatechin (EC), Epigallocatechin (EGC), Epicatechin gallate (ECG), Epigallocatechin gallate (EGCG) and Gallotannic acid (GTA) were investigated in both whole plant and suspension cell systems. ECG, EGCG, and GTA displayed elicitor activities. Their infiltration into tobacco leaves induced hypersensitive reaction-like lesions with topical scopoletin and PR-target transcript accumulations. On the contrary, EC and EGC infiltrations fail to trigger the biochemical changes in tobacco tissues. The tobacco BY-2 cells challenged with ECG, EGCG, or GTA led to alkalinization of the BY-2 extracellular medium while EC and EGC did not trigger any pH variation. This work provides evidence that the esterified gallate pattern is as an essential flavonoid entity to induce plant defense reactions in tobacco. The phytoprotective properties of the esterified gallate-free EC and the esterified gallate-rich GTA were evaluated on the tobacco/Phytophthora parasitica var. nicotianae (P-pn) pathosystem. Tobacco treatment with EC did not induce significant protection against P-pn compared to GTA which shows antimicrobial properties on Ppn and decreases the infection on GTA-infiltrated and -sprayed wild-type leaves. GTA protection was impaired in the transgenic NahG tobacco plants, suggesting that protection was mediated by salicylic acid.
More
Translated text
Key words
defense reactions, epicatechin, epigallocatechin gallate, flavan-3-ols, gallates, gallotannins, tobacco
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined