Chrome Extension
WeChat Mini Program
Use on ChatGLM

Fluorescence imaging analysis of depth-dependent degradation in photovoltaic laminates: insights to the failure

PROGRESS IN PHOTOVOLTAICS(2020)

Cited 13|Views8
No score
Abstract
Accurate evaluation of the reliability of photovoltaic (PV) packaging materials is critically important for the long-term safe operation of modules. However, the complexity of the laminated systems due to their multilayered and multicomponent structures and diverse aging mechanisms makes a thorough system evaluation very challenging, especially when the degradation is non-uniform through the thickness. In such a case, neither surface nor bulk measurements can present a clear picture of the degradation profile. In this study, fluorescence imaging was developed to visualize the degradation depth-profiles of an aged laminated PV system. A glass/ethylene vinyl acetate (EVA) encapsulant/poly(ethylene terephthalate) (PET)-PET-EVA (PPE) backsheet laminate was weathered with the glass-side facing an ultraviolet (UV) light source for 3840 h. Cross-sectional fluorescence images revealed a non-uniform distribution of degradation species across the thickness of the EVA encapsulant, providing greater insight into the mechanisms of degradation, which are unavailable by traditional bulk-based methods. In addition, strong fluorescence emissions were observed from the two thin adhesive layers of the aged backsheet, indicating severe degradation of the adhesives and a potential for interlayer delamination. This method is further confirmed with other microscale characterization techniques. The changes in optical (yellowness index), chemical (oxidation, UV absorber concentration), mechanical (Derjaguin-Muller-Toporov modulus), and thermal (melting enthalpy) properties of the EVA encapsulant were found to be related to fluorescence profiles, following the attenuation of UV light. This study highlights that fluorescence imaging is a spatially-resolved and sensitive method for rapid failure assessment and in-depth mechanism study for complex PV-laminated system.
More
Translated text
Key words
degradation,depth profile,fluorescence imaging,modulus,photovoltaic laminates,UV aging,yellowness index
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined