Availability analysis on combustion of n-heptane and isooctane blends in a reactivity controlled compression ignition engine

PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING(2018)

引用 15|浏览3
暂无评分
摘要
Unfortunately, energy demands and destruction of the environment from uncontrolled manipulation of fossil fuels have increased. Climate change concerns have resulted in the rapid use of new, alternative combustion technologies. In this study, reactivity controlled compression ignition (RCCI) combustion, which can simply be exploited in internal combustion (IC) engines, is investigated. To introduce and identify extra insightful information, an exergy-based study was conducted to classify various irreversibility and loss sources. Multidimensional models were combined with the primary kinetics mechanism to investigate RCCI combustion, incorporating the second law of thermodynamics. The n-heptane, a highly reactive fuel, was supplied by direct injection into the cylinder, whereas premixed fuel was supplied through the intake port in an isooctane/n-heptane RCCI engine. For five n-heptane increments (5%, 7.5%, 15%, 25%, and 40%) and six different exhaust gas recirculation (EGR) rates (0%, 10%, 20%, 30%, 40%, and 50%), accumulation of different exergy terms was calculated. The results show that as EGR introduction increases from 0% to 50%, the exergy destruction increases from 21.1% to 28.9%. Furthermore, the value of exhaust thermomechanical exergy decreases from 18.4% to 14.4% of the mixture fuel chemical exergy. Among the five different high reactive fuel mass regimes, the 40% n-heptane mass fraction has the major heat transfer exergy owing to its advanced CA50 that exerts a unique influence on cylinder charge temperature of heat transfer layer. The utilization efficiency of exhaust in RCCI is less affected by the variation of reactive fuel mass fraction by contrast; it will significantly influence heat transfer availability. This study revealed that with increasing reactive fuel (n-heptane) from 7.5% to 40% the irreversibility decreased from 28.6% to 25.8% and the second law efficiency first increased from 43.2% to 44.6% at 15% n-heptane then decreased to 42.9% at 40% n-heptane.
更多
查看译文
关键词
RCCI combustion,availability analysis,second-law efficiency,exhaust gas recirculation,heat release
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要