Multi-objective optimization design for the blade angles of hydraulic torque converter with adjustable pump

PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE(2020)

Cited 5|Views1
No score
Abstract
To improve the efficiency of a hydraulic torque converter with adjustable pump at low load and thus increase the operation scope of high efficiency, multi-objective optimization design is carried out for the blade angles by incorporating three-dimensional steady computational fluid dynamics numerical simulation, design of experiments, Kriging surrogate model and multi-objective genetic algorithm. The results show that the angle of blade trailing edge in first-stage stator is the main influencing factor of the efficiency of hydraulic torque converter with adjustable pump. All the peak efficiencies of hydraulic torque converter with adjustable pump at three openings of the pump are improved after optimization, and the increased extent increases with decreasing opening of the pump. The operation scope of high efficiency consequently increases from 2.46 to 2.67. Besides, the improvement for the efficiency of hydraulic torque converter with adjustable pump is achieved by increasing the efficiency of the pump. The increase of angle of blade trailing edge in first-stage stator and the decrease of angle of blade leading edge in second-stage turbine after optimization induce the positive angle of attack at the inlet of second-stage turbine, thus realizing the performance optimization of hydraulic torque converter with adjustable pump. This also explains the increased proportion of the torque of second-stage turbine at larger speed ratios after optimization and the fact that the angle of blade trailing edge in first-stage stator is the main influencing factor of the efficiency of hydraulic torque converter with adjustable pump. The established multi-objective optimization method provides a reference solution for the optimization design of blade angles and for the improvement of integrated efficiency of hydraulic torque converter.
More
Translated text
Key words
Hydraulic torque converter,adjustable pump,design of experiments,Kriging surrogate model,multi-objective genetic algorithm,CFD numerical simulation
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined