One-for-all intelligent core-shell nanoparticles for tumor-specific photothermal-chemodynamic synergistic therapy

BIOMATERIALS SCIENCE(2021)

引用 27|浏览8
暂无评分
摘要
Reasonable management of the one-for-all nanoplatform can facilitate improved cancer therapy. Here, the metal-organic frameworks (MOFs) based on iron(iii) carboxylate material (MIL-101-NH2) were in situ decorated on stabilized polydopamine nanoparticles (PDANPs), which subsequently loaded glucose oxidase (GOx) via hyaluronic acid (HA) coating to structure the one-for-all intelligent core-shell nanoparticles (HG-MIL@PDANPs). Because of the inner PDANPs, the HG-MIL@PDANPs could realize near-infrared (NIR)-controllable site-specific photothermal therapy (PTT). Additionally, the core-shell nanoparticles exhibited a pH-triggered and NIR-reinforced release of Fe3+ and GOx owing to the controllable degradation of the outer shell. Hydroxyl radicals (OH) were produced for chemodynamic therapy (CDT) employing the Fe2+-driven Fenton reaction, which could be greatly promoted by Fe3+-involved glutathione (GSH) depletion and GOx-catalyzed acidity recovery and H2O2 self-sufficiency. Moreover, the HA ligand could enhance the tumor accumulation of the HG-MIL@PDANPs through the long blood circulation time and CD44-targeted cell recognition. The ingenious integration of PTT and CDT in one fully equipped system presented excellent synergistic antitumor efficiency in vitro and in vivo with favorable biosafety. The one-for-all intelligent core-shell nanoparticles with CD44 targeting provide a new avenue for engineering on-demand tumor-specific therapy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要