Understanding And Controlling The Performance-Limiting Steps Of Catalyst-Modified Semiconductors

JOURNAL OF PHYSICAL CHEMISTRY LETTERS(2021)

引用 6|浏览5
暂无评分
摘要
Understanding and controlling factors that restrict the rates of fuel-forming reactions are essential to designing effective catalyst-modified semiconductors for applications in solar-to-fuel technologies. Herein, we describe GaAs semiconductors featuring a polymeric coating that contains cobaloxime-type catalysts for photoelectrochemically powering hydrogen production. The activities of these electrodes (limiting current densities >20 mA cm(2) under 1-sun illumination) enable identification of fundamental performance-limiting bottlenecks encountered at relatively high rates of fuel formation. Experiments conducted under varying bias potential, pH, illumination intensity, and scan rate reveal two distinct mechanisms of photoelectrochemical hydrogen production. At relatively low polarization and pH, the limiting photoactivity is independent of illumination conditions and is attributed to a mechanism involving reduction of substrate protons. At relatively high polarization or pH, the limiting photoactivity shows a linear response to increasing photon flux and is attributed to a mechanism involving reduction of substrate water. This work illustrates the complex interplay between transport of photons, electrons, and chemical substrates in photoelectrosynthetic reactions and highlights diagnostic tools for better understanding these processes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要