A CRISPR/Cas12a Based Universal Lateral Flow Biosensor for the Sensitive and Specific Detection of African Swine-Fever Viruses in Whole Blood.

Biosensors(2020)

引用 23|浏览25
暂无评分
摘要
Cross-border pathogens such as the African swine fever virus (ASFV) still pose a socio-economic threat. Cheaper, faster, and accurate diagnostics are imperative for healthcare and food safety applications. Currently, the discovery of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) has paved the way for the diagnostics based on Cas13 and Cas12/14 that exhibit collateral cleavage of target and single-stranded DNA (ssDNA) reporter. The reporter is fluorescently labeled to report the presence of a target. These methods are powerful; however, fluorescence-based approaches require expensive apparatuses, complicate results readout, and exhibit high-fluorescence background. Here, we present a new CRISPR-Cas-based approach that combines polymerase chain reaction (PCR) amplification, Cas12a, and a probe-based lateral flow biosensor (LFB) for the simultaneous detection of seven types of ASFV. In the presence of ASFVs, the LFB responded to reporter trans-cleavage by naked eyes and achieved a sensitivity of 2.5 × 10-15 M within 2 h, and unambiguously identified ASFV from swine blood. This system uses less time for PCR pre-amplification and requires cheaper devices; thus, it can be applied to virus monitoring and food samples detection.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要