Modeling Auger Processes With Nonadiabatic Molecular Dynamics

NANO LETTERS(2021)

Cited 29|Views6
No score
Abstract
Auger-type energy exchange plays key roles in the carrier dynamics in nanomaterials due to strong carrier-carrier interactions. However, theoretical descriptions are limited to perturbative calculations of scattering rates on static structures. We develop an accurate and efficient ab initio technique to model Auger scattering with nonadiabatic molecular dynamics. We incorporate the many-body Coulomb matrix into several surface hopping methods and describe simultaneously charge-charge and charge-phonon scattering in the time-domain and in a nonperturbative, configuration-dependent manner. The approach is illustrated with a CdSe phonon bottleneck to electron relaxation. The bottleneck is recovered when quantum dot. Auger scattering between electrons and holes breaks the electrons and holes are decoupled. The simulations correctly reproduce all experimental processes and time scales, including Auger- and phonon-assisted cooling of hot electrons, intraband carrier relaxation, and carrier recombination. Providing detailed insights into the energy flow, the developed method allows studies of carrier dynamics in nanomaterials with strong carrier-carrier interactions.
More
Translated text
Key words
Auger Process, Time-Dependent Density Functional Theory, Nonadiabatic Molecular Dynamics, Electron-Electron Scattering
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined