Flexural Strength Of Resin Core Build-Up Materials: Correlation To Root Dentin Shear Bond Strength And Pull-Out Force

POLYMERS(2020)

Cited 7|Views7
No score
Abstract
The aims of this study were to investigate the effects of root dentin shear bond strength and pull-out force of resin core build-up materials on flexural strength immediately after setting, after one-day water storage, and after 20,000 thermocycles. Eight core build-up and three luting materials were investigated, using 10 specimens (n = 10) per subgroup. At three time periods-immediately after setting, after one-day water storage, and after 20,000 thermocycles, shear bond strengths to root dentin and pull-out forces were measured. Flexural strengths were measured using a 3-point bending test. For all core build-up and luting materials, the mean data of flexural strength, shear bond strength and pull-out force were the lowest immediately after setting. After one-day storage, almost all the materials yielded their highest results. A weak, but statistically significant, correlation was found between flexural strength and shear bond strength (r = 0.508, p = 0.0026, n = 33). As the pull-out force increased, the flexural strength of core build-up materials also increased (r = 0.398, p = 0.0218, n = 33). Multiple linear regression analyses were conducted using these three independent factors of flexural strength, pull-out force and root dentin shear bond strength, which showed this relationship: Flexural strength = 3.264 x Shear bond strength + 1.533 x Pull out force + 10.870, p = 0.002). For all the 11 core build-up and luting materials investigated immediately after setting, after one-day storage and after 20,000 thermocycles, their shear bond strengths to root dentin and pull-out forces were correlated to the flexural strength in core build-up materials. It was concluded that the flexural strength results of the core build-up material be used in research and quality control for the predictor of the shear bond strength to the root dentin and the retentive force of the post.
More
Translated text
Key words
flexural strength, resin core build-up materials, durability, pull-out force, bond strength
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined