谷歌浏览器插件
订阅小程序
在清言上使用

Impact of physical activity on redox status and nitric oxide bioavailability in nonoverweight and overweight/obese prepubertal children.

Free radical biology & medicine(2020)

引用 6|浏览28
暂无评分
摘要
Nutritional status might contribute to variations induced by physical activity (PA) in redox status biomarkers. We investigated the influence of PA on redox status and nitric oxide (NO) production/metabolism biomarkers in nonoverweight and overweight/obese prepubertal children. We performed a cross-sectional evaluation of 313 children aged 8-9 years (163 nonoverweight, 150 overweight/obese) followed since birth in a cohort study (Generation XXI, Porto, Portugal). Plasma total antioxidant status (P-TAS), plasma and urinary isoprostanes (P-Isop, U-Isop), urinary hydrogen peroxide (U-H2O2), myeloperoxidase (MPO) and plasma and urinary nitrates and nitrites (P-NOx, U-NOx) were assessed, as well as their association with variables of reported PA quantification (categories of PA frequency (>1x/week and ≤1x/week)and continuous PA index (obtained by the sum of points)) in a questionnaire with increasing ranks from sedentary to vigorous activity levels. U-NOx was significantly higher in children who presented higher PA index scores and higher PA frequency. Separately by BMI classes, U-NOx was significantly higher only in nonoverweight children who practiced PA more frequently (p = 0.037). In overweight/obese children, but not in nonoverweight, P-TAS was higher among children with higher PA frequency (p = 0.007). Homeostasis model assessment index (HOMA-IR) was significantly lower in more active overweight/obese children, but no differences were observed in nonoverweight children. In the fully adjusted multivariate linear regression models for P-TAS, in the overweight/obese group, children with higher PA frequency presented higher P-TAS. In the U-NOx models, U-NOx significantly increased with PA index, only in nonoverweight children. Our results provide additional evidence in support of a protective effect of physical activity, in nonoverweight by increasing NO bioavailability and in overweight/obese children by enhancing systemic antioxidant capacity and insulin sensitivity. These results highlight the importance of engaging in regular physical exercise, particularly among overweight/obese children, in which a positive association between oxidant status and cardiometabolic risk markers has been described.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要