谷歌浏览器插件
订阅小程序
在清言上使用

Simulation of groundwater level recovery in abandoned mines, Fengfeng coalfield, China

JOURNAL OF GROUNDWATER SCIENCE AND ENGINEERING(2016)

引用 2|浏览2
暂无评分
摘要
Abandoned mines are of high potential risk as they could be a large underground storage of pollutants (heavy metals and organic wastes, etc.). Various physical, chemical and biological reactions would take place when groundwater flows into underground spaces, which makes abandoned mine a huge potential hazard to groundwater environment. The recovery of groundwater level is one of the key elements controlling the reactions and causing such hazards. This paper simulated groundwater level recovery processes in the abandoned mines, Fengfeng coalfield by using the computer program FEFLOW. The paper integrated the pipe flow model, "three zones" model and groundwater inrush (discharge) model in the simulation of groundwater in the complex laneway-aquifer system. Groundwater flow in the laneway systems was considered pipe flow and described in Bernoulli equation. The water-bearing medium (coal seam roof) overlying the laneway systems was divided into "three zones" composed of the caving zone, fissure zone and bending zone based on the disruption degrees of previous mining. Groundwater in the Ordovician limestone aquifer (bottom of coal seam) flowing into laneway systems was considered a major inrush/recharge source, and its flow rate was calculated by an inrush (discharge) model which was newly developed in this study and incorporated into FEFLOW. The results showed that it would take approximately 95 days for groundwater in abandoned mines to recover to regional groundwater level elevation, and the total amount of water filling up would be about 1.41195x10(7) m(3), which is consistent with the actual data. The study could be of theoretical and practical significance to mitigate abandoned mines' hazards and improve mine groundwater utilization.
更多
查看译文
关键词
Abandoned mine,Laneway system,Aquifer media,FEFLOW program,Groundwater level recovery
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要