谷歌Chrome浏览器插件
订阅小程序
在清言上使用

DeepSpectra: An end-to-end deep learning approach for quantitative spectral analysis.

Analytica chimica acta(2019)

引用 250|浏览15
暂无评分
摘要
Learning patterns from spectra is critical for the development of chemometric analysis of spectroscopic data. Conventional two-stage calibration approaches consist of data preprocessing and modeling analysis. Misuse of preprocessing may introduce artifacts or remove useful patterns and result in worse model performance. An end-to-end deep learning approach incorporated Inception module, named DeepSpectra, is presented to learn patterns from raw data to improve the model performance. DeepSpectra model is compared to three CNN models on the raw data, and 16 preprocessing approaches are included to evaluate the preprocessing impact by testing four open accessed visible and near infrared spectroscopic datasets (corn, tablets, wheat, and soil). DeepSpectra model outperforms the other three convolutional neural network models on four datasets and obtains better results on raw data than in preprocessed data for most scenarios. The model is compared with linear partial least square (PLS) and nonlinear artificial neural network (ANN) methods and support vector machine (SVR) on raw and preprocessed data. The results show that DeepSpectra approach provides improved results than conventional linear and nonlinear calibration approaches in most scenarios. The increased training samples can improve the model repeatability and accuracy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要