Observation of plaquette fluctuations in the spin-1/2 honeycomb lattice

NPJ QUANTUM MATERIALS(2020)

引用 21|浏览9
暂无评分
摘要
Quantum spin liquids are materials that feature quantum entangled spin correlations and avoid magnetic long-range order at T = 0 K. Particularly interesting are two-dimensional honeycomb spin lattices where a plethora of exotic quantum spin liquids have been predicted. Here, we experimentally study an effective S = 1/2 Heisenberg honeycomb lattice with competing nearest and next-nearest-neighbour interactions. We demonstrate that YbBr 3 avoids order down to at least T = 100 mK and features a dynamic spin–spin correlation function with broad continuum scattering typical of quantum spin liquids near a quantum critical point. The continuum in the spin spectrum is consistent with plaquette type fluctuations predicted by theory. Our study is the experimental demonstration that strong quantum fluctuations can exist on the honeycomb lattice even in the absence of Kitaev-type interactions, and opens a new perspective on quantum spin liquids.
更多
查看译文
关键词
Magnetic properties and materials,Phase transitions and critical phenomena,Physics,general,Condensed Matter Physics,Structural Materials,Surfaces and Interfaces,Thin Films,Quantum Physics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要