Achieving the ultimate precision limit with a weakly interacting quantum probe

NPJ QUANTUM INFORMATION(2020)

引用 2|浏览9
暂无评分
摘要
The ultimate precision limit in estimating the Larmor frequency of N unentangled qubits is well established, and is highly important for magnetometers, gyroscopes, and other types of quantum sensors. However, this limit assumes perfect projective measurements of the quantum registers. This requirement is not practical in many physical systems, such as NMR spectroscopy, where a weakly interacting external probe is used as a measurement device. Here, we show that in the framework of quantum nano-NMR spectroscopy, in which these limitations are inherent, the ultimate precision limit is still achievable using control and a finely tuned measurement.
更多
查看译文
关键词
Quantum information,Quantum metrology,Theoretical physics,Physics,general,Quantum Physics,Quantum Information Technology,Spintronics,Quantum Computing,Quantum Field Theories,String Theory,Classical and Quantum Gravitation,Relativity Theory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要