Nitrogen-doping induces tunfable magnetism in ReS2

NPJ 2D MATERIALS AND APPLICATIONS(2018)

Cited 34|Views11
No score
Abstract
Transition metal dichalcogenides (TMDs) are promising for spintronic devices owing to their spin-orbit coupling and loss of inversion symmetry. However, further development was obstructed by their intrinsic nonmagnetic property. Doping TMDs with non-metal light atoms has been predicted to be a good option to induce unexpected magnetic properties which remain rarely explored. Here, we utilize nitrogen doping to introduce magnetic domains into anisotropic ReS2, giving rise to a transition from nonmagnetic to tunable magnetic ordering. Both of the experimental and computational results confirmed that the N-doping in ReS2 prefers to take place at the edge site than in-plane site. With controlled doping concentration, it exhibits a unique ferromagnetic-antiferromagnetic (FM-AFM) coupling. Assisted by theoretical calculations, we demonstrated that FM-AFM coupling presents a strong link to doping contents and doping sites. Wherein, the FM ordering mostly comes from N atoms and the AFM ordering originate from Re atoms. At the N-doping content of 4.24%, the saturated magnetization of N-doped ReS2 reached the largest value of 2.1 emu g(-1) at 2 K. Further altering the content to 6.64%, the saturated magnetization of N-doped ReS2 decreases, but exhibits a distinct exchange bias (EB) phenomenon of around 200 Oe. With controlled N-doping concentrations, the intrinsic spin in ReS2 could be well altered and resulted in distinct magnetism, presenting tremendous potential for spintronic devices in information storage.
More
Translated text
Key words
Magnetic properties and materials,Two-dimensional materials,Materials Science,general,Nanotechnology,Surfaces and Interfaces,Thin Films
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined