Dcabf3, An Abf Transcription Factor From Carrot, Alters Stomatal Density And Reduces Aba Sensitivity In Transgenic Arabidopsis

PLANT SCIENCE(2021)

Cited 20|Views33
No score
Abstract
Abscisic acid-responsive element (ABRE)-binding factors (ABFs) are important transcription factors involved in various physiological processes in plants. Stomata are micro channels for water and gas exchange of plants. Previous researches have demonstrated that ABFs can modulate the stomatal development in some plants. However, little is known about stomata-related functions of ABFs in carrots. In our study, DcABF3, a gene encoding for ABF transcription factor, was isolated from carrot. The open reading frame of DcABF3 was 1329 bp, encoding 442 amino acids. Expression profiles of DcABF3 indicated that DcABF3 can respond to drought, salt or ABA treatment in carrots. Overexpressing DcABF3 in Arabidopsis led to the increase of stomatal density which caused severe water loss. Expression assay indicated that overexpression of DcABF3 caused high expression of stomatal development-related transcription factor genes, SPCH, FAMA, MUTE and SCRMs. Increased antioxidant enzyme activities and higher expression levels of stress-related genes were also found in transgenic lines after water deficit treatment. Changes in expression of ABA synthesis-related genes and AtABIs indicated the potential role of DcABF3 in ABA signaling pathway. Under the treatment of exogenous ABA, DcABF3-overexpression Arabidopsis seedlings exhibited increased root length and germination rate. Our findings demonstrated that heterologous overexpression of DcABF3 positively affected stomatal development and also reduced ABA sensitivity in transgenic Arabidopsis.
More
Translated text
Key words
ABF, abscisic acid, Arabidopsis, Daucus carota, drought tolerance, stomatal density, transcriptional regulation
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined