Distinct roles of nucleosome sliding and histone modifications in controlling the fidelity of transcription initiation

RNA BIOLOGY(2021)

引用 1|浏览3
暂无评分
摘要
Regulation of gene expression starts from the transcription initiation. Regulated transcription initiation is critical for generating correct transcripts with proper abundance. The impact of epigenetic control, such as histone modifications and chromatin remodelling, on gene regulation has been extensively investigated, but their specific role in regulating transcription initiation is far from well understood. Here we aimed to better understand the roles of genes involved in histone H3 methylations and chromatin remodelling on the regulation of transcription initiation at a genome-scale using the budding yeast as a study system. We obtained and compared maps of transcription start site (TSS) at single-nucleotide resolution by nAnT-iCAGE for a strain with depletion of MINC (Mot1-Ino80C-Nc2) by Mot1p and Ino80p anchor-away (Mot1&Ino80AA) and a strain with loss of histone methylation (set1 Delta set2 Delta dot1 Delta) to their wild-type controls. Our study showed that the depletion of MINC stimulated transcription initiation from many new sites flanking the dominant TSS of genes, while the loss of histone methylation generates more TSSs in the coding region. Moreover, the depletion of MINC led to less confined boundaries of TSS clusters (TCs) and resulted in broader core promoters, and such patterns are not present in the ssd Delta mutant. Our data also exhibits that the MINC has distinctive impacts on TATA-containing and TATA-less promoters. In conclusion, our study shows that MINC is required for accurate identification of bona fide TSSs, particularly in TATA-containing promoters, and histone methylation contributes to the repression of transcription initiation in coding regions.
更多
查看译文
关键词
Transcription initiation, CAGE-Seq, MINC, histone methylation, TATA
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要