Development of mass spectrometry-based relatively quantitative targeted method for amino acids and neurotransmitters: Applications in the diagnosis of major depression.

Journal of pharmaceutical and biomedical analysis(2020)

引用 18|浏览15
暂无评分
摘要
Targeted metabolomics analysis based on triple quadrupole (QQQ) MS coupled with multiple reaction monitoring mode (MRM) is the gold standard for metabolite quantification and it is widely applied in metabolomics. However, standard compounds for each metabolite and the corresponding analogs are necessary for quantitative measurements. To identify the differentially present metabolites in various groups, determining the relative concentration of metabolites would be more efficient than accurate quantification. In this study, a relatively quantitative targeted method was established for metabonomics research, on the basis of hydrophilic interaction liquid chromatography (HILIC)/QQQ MS operated in MRM mode. The quality control-base random forest signal correction algorithm (QC-RFSC algorithm) was applied for quality control instead of the internal standard method. High quality relative quantification was achieved without internal standards, and integrated peak areas were successfully used for statistical and pathway analyses. Amino acids and neurotransmitters (dopamine, kynurenic acid, urocanic acid, tryptophan, kynurenine, tyrosine, valine, threonine, serine, alanine, glycine, glutamine, citrulline, GABA, glutamate, aspartate, arginine, ornithine and histidine) in serum samples were simultaneously determined with the newly developed method. To demonstrate the applicability of this method in large-scale analyses, we analyzed the above metabolites in serum from patients with major depression. The serum levels of glutamate, aspartate, threonine, glycine and alanine were significantly higher, and those of citrulline, kynurenic acid and urocanic acid were significantly lower, in patients with major depression than in controls. This is the first report of the difference in urocanic acid, a compound reported to improve glutamate biosynthesis and release in the central nervous system, between healthy controls and patients with major depression.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要