Regulation Of Vp30-Dependent Transcription By Rna Sequence And Structure In The Genomic Ebola Virus Promoter

JOURNAL OF VIROLOGY(2021)

引用 4|浏览18
暂无评分
摘要
Viral transcription and replication of Ebola virus (EBOV) are balanced by transcription factor VP30, an RNA-binding protein. An RNA hairpin at the transcription start site (TSS) of the first gene (NP hairpin) in the 3'-leader promoter is thought to mediate the VP30 dependency of transcription. Here, we investigated the constraints of VP30 dependency using a series of monocistronic minigenomes with sequence, structure, and length deviations from the native NP hairpin. Hairpin stabilizations decreased while destabilizations increased transcription in the absence of VP30, but in all cases, transcription activity was higher in the presence than the absence of VP30. This also pertains to a mutant that is unable to form any RNA secondary structure at the TSS, demonstrating that the activity of VP30 is not determined simply by the capacity to form a hairpin structure at the TSS. Introduction of continuous 3'-UN, hexamer phasing between promoter elements PE1 and PE2 by a single point mutation in the NP hairpin boosted VP30-independent transcription. Moreover, this point mutation, but also hairpin stabilizations, impaired the relative increase of replication in the absence of VP30. Our results suggest that the native NP hairpin is optimized for tight regulation by VP30 while avoiding an extent of hairpin stability that impairs viral transcription, as well as for enabling the switch from transcription to replication when VP30 is not part of the polymerase complex.IMPORTANCE A detailed understanding of how the Ebola virus (EBOV) protein VP30 regulates activity of the viral polymerase complex is lacking. Here, we studied how RNA sequence, length, and structure at the transcription start site (TSS) in the 3'-leader promoter influence the impact of VP30 on viral polymerase activity. We found that hairpin stabilizations tighten the VP30 dependency of transcription but reduce transcription efficiency and attenuate the switch to replication in the absence of VP30. Upon hairpin destabilization, VP30-independent transcription-already weakly detectable at the native promoter-increases but never reaches the same extent as in the presence of VP30. We conclude that the native hairpin structure involving the TSS (i) establishes an optimal balance between efficient transcription and tight regulation by VP30, (ii) is linked to hexamer phasing in the promoter, and (iii) favors the switch to replication when VP30 is absent.
更多
查看译文
关键词
3 '-leader promoter, transcription start site and spacer region, RNA sequence and structure variation, switch from transcription to replication, minigenome system, qRT-PCR of viral RNAs, VP30 dependency of Ebola virus transcription
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要