Excessive nitrogen addition accelerates N assimilation and P utilization by enhancing organic carbon decomposition in a Tibetan alpine steppe.

The Science of the total environment(2020)

引用 28|浏览30
暂无评分
摘要
High amounts of deposited nitrogen (N) dramatically influence the stability and functions of alpine ecosystems by changing soil microbial community functions, but the mechanism is still unclear. To investigate the impacts of increased N deposition on microbial community functions, a 2-year multilevel N addition (0, 10, 20, 40, 80 and 160 kg N ha-1 year-1) field experiment was set up in an alpine steppe on the Tibetan Plateau. Soil microbial functional genes (GeoChip 4.6), together with soil enzyme activity, soil organic compounds and environmental variables, were used to explore the response of microbial community functions to N additions. The results showed that the N addition rate of 40 kg N ha-1 year-1 was the critical value for soil microbial functional genes in this alpine steppe. A small amount of added N (≤40 kg N ha-1 year-1) had no significant effects on the abundance of microbial functional genes, while high amounts of added N (>40 kg N ha-1 year-1) significantly increased the abundance of soil organic carbon degradation genes. Additionally, the abundance of microbial functional genes associated with NH4+, including ammonification, N fixation and assimilatory nitrate reduction pathways, was significantly increased under high N additions. Further, high N additions also increased soil organic phosphorus utilization, which was indicated by the increase in the abundance of phytase genes and alkaline phosphatase activity. Plant richness, soil NO2-/NH4+ and WSOC/WSON were significantly correlated with the abundance of microbial functional genes, which drove the changes in microbial community functions under N additions. These findings help us to predict that increased N deposition in the future may alter soil microbial functional structure, which will lead to changes in microbially-mediated biogeochemical dynamics in alpine steppes on the Tibetan Plateau and will have extraordinary impacts on microbial C, N and P cycles.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要