Pyropheophorbide-Fullerene Dyad: Synthesis and Photochemical Properties

MACROHETEROCYCLES(2019)

引用 10|浏览6
暂无评分
摘要
The methylpyropheophorbide-fullerene[60] dyad was synthesized by 1, 3-dipolar cycloadditions of the corresponding azomethine ylide to C-60 (Prato reaction). Using the mass spectrometric method with soft matrix-activated ionization it was possible to achieve a significant reduction in fragmentation processes by the retro-Diels-Alder reaction, which allows to reliably detect the presence of polyadducts of azomethine ylide cycloadditions to fullerene. The use of gel permeation chromatography under conditions of weakening of the intermolecular pi-pi interaction between methylpyropheophorbide and fullerene moieties makes it possible to effectively separate mixed products with similar to 1.5 fold difference in molecular weight. It has been shown that the fluorescence of the dyad is quenched more than 5000 times (compared to the native dye). The singlet oxygen quantum yield of the dyad is 360 times less than that for the native methylpyropheophorbide a, however, its efficiency of superoxide generation increases by 18.5 times. The obtained result agrees well with the previously reported mechanism of relaxation of the excited state of the dyad through a charge-separated state, which can lead to the formation of superoxide. The observed effects indicate a change in the mechanism of photodynamic activity from type II (generation of singlet oxygen) for the native dye to type I (generation of superoxide) for the dyad, which shows a promising method of creation of highly efficient photosensitizers based on similar dye-fullerene[60] dyads.
更多
查看译文
关键词
Pyropheophorbide,fullerene derivatives,fluorescence quantum yield,photochemical activity,singlet oxygen,mass spectrometry,matrix-assisted ionization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要