Channeled polysaccharide-based hydrogel reveals influence of curvature to guide endothelial cell arrangement in vessel-like structures

Materials Science and Engineering: C(2021)

引用 9|浏览18
暂无评分
摘要
Within the biomaterials proposed for tissue regeneration, synthetic 3D hydrogels that mimic soft tissues possess great potential for regenerative medicine but their poor vascularization rate is usually incompatible with long-term cell survival. Fabrication of biomaterials that promote and/or accelerate vascularization remains nowadays a challenge. In the present work, hydrogels with tubular geometries ranging from 28 to 680 μm in diameter, that correspond to those of human small artery/veins and arterioles and venules, were prepared. The surface of this tubes was coated with proteins of the extracellular matrix assuring the adhesion of endothelial cells in a monolayer. Interestingly, in the case of small diameter channels, polysaccharide-based hydrogels made of neutral pullulan and dextran that do not allow endothelial cell adhesion, were transformed into active materials guiding endothelial cell behavior solely by modification of the internal microarchitecture, without addition of proteins. Under static conditions, endothelial cell adhesion, migration, proliferation and polarization on the hydrogel was induced, without the addition of any extracellular matrix protein or adhesion peptide; this property was found to be directly dependent on the curvature of the internal channels. In the last years, the impact of the geometry of biomaterials to regulate cell behavior has been highlighted paving the way to use non-flat geometries as cues to develop biomaterials to guide tissue regeneration. Here, we report a functional material based on geometrical cues to assure endothelial cell arrangement in tubular vessel-like structures and providing with new pro-vascularizing properties.
更多
查看译文
关键词
Hydrogels,Microarchitecture,Structured material,Tissue engineering,Vascularization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要