Tracking Cosmic-Ray Spectral Variation during 2007-2018 Using Neutron Monitor Time-delay Measurements

ASTROPHYSICAL JOURNAL(2020)

引用 12|浏览31
暂无评分
摘要
The energy spectrum of Galactic cosmic-ray (GCR) ions at Earth varies with solar activity as these ions cross the heliosphere. Thus, this "solar modulation" of GCRs provides remote sensing of heliospheric conditions throughout the similar to 11 yr sunspot cycle and similar to 22 yr solar magnetic cycle. A neutron monitor (NM) is a stable ground-based detector that measures cosmic-ray rate variations above a geomagnetic or atmospheric cutoff rigidity with high precision (similar to 0.1%) over such timescales. Furthermore, we developed electronics and analysis techniques to indicate variations in the cosmic-ray spectral index using neutron time-delay data from a single station. Here we study solar modulation using neutron time-delay histograms from two high-altitude NM stations: (1) the Princess Sirindhorn Neutron Monitor at Doi Inthanon, Thailand, with the world's highest vertical geomagnetic cutoff rigidity, 16.7 GV, from 2007 December to 2018 April; and (2) the South Pole NM, with an atmosphere-limited cutoff of similar to 1 GV, from 2013 December to 2018 April. From these histograms, we extract the leader fraction L, i.e., inverse neutron multiplicity, as a proxy of a GCR spectral index above the cutoff. After correction for pressure and precipitable water vapor variations, we find that L roughly correlates with the count rate but also exhibits hysteresis, implying a change in spectral shape after a solar magnetic polarity reversal. Spectral variations due to Forbush decreases, 27 day variations, and a ground-level enhancement are also indicated. These methods enhance the high-precision GCR spectral information from the worldwide NM network and extend it to higher rigidity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要