Thin-film micro-concentrator solar cells

JOURNAL OF PHYSICS-ENERGY(2020)

引用 21|浏览17
暂无评分
摘要
Photovoltaic (PV) energy conversion of sunlight into electricity is now a well-established technology and a strong further expansion of PV will be seen in the future to answer the increasing demand for clean and renewable energy. Concentrator PV (CPV) employs optical elements to concentrate sunlight onto small solar cells, offering the possibility of replacing expensive solar cells with more economic optical elements, and higher device power conversion efficiencies. While CPV has mainly been explored for highly efficient single-crystalline and multi-junction solar cells, the combination of thin-film solar cells with the concentration approach opens up new horizons in CPV. Typical fabrication of thin-film solar cells can be modified for efficient, high-throughput and parallel production of organized arrays of micro solar cells. Their combination with microlens arrays promises to deliver micro-concentrator solar modules with a similar form factor to present day flat-panel PV. Such thin-film micro-concentrator PV modules would use significantly less semiconductor solar cell material (reducing the use of critical raw materials) and lead to a higher energy production (by means of concentrated sunlight), with the potential to lead to a lower levelized cost of electricity. This review article gives an overview of the present state-of-the-art in the fabrication of thin-film micro solar cells based on Cu(In,Ga)Se-2 absorber materials and introduces optical concentration systems that can be combined to build the future thin-film micro-concentrator PV technology.
更多
查看译文
关键词
photovoltaics,concentrator photovoltaics,thin-film solar cells,Cu(In,Ga)Se-2,micro-concentrator photovoltaics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要