Tunable arrangement of hydrogel and cyclodextrin-based metal organic frameworks suitable for drug encapsulation and release.

Carbohydrate polymers(2021)

Cited 12|Views7
No score
Abstract
The present study focused on the integration of beta-cyclodextrin based metal-organic frameworks (β-CDMOF) with polymer to obtain hybrid materials with advantageous properties compared to traditional single-component polymers or metal-organic frameworks (MOF) matrixes. We fabricated two complexes with different morphology and structure. During the in situ growth of β-CDMOF around the hydrogel, potassium ions on polysaccharides gradually dissociated to participate in the growth of crystals, while other potassium ions on the carboxylic acid groups provided bridges between crystals and hydrogel, forming a necklace-shaped complex (SHPs@β-CDMOF). Hydrogen bonding and coordination interactions between β-CDMOF and hydrogel are present in a dendritic sandwich-shaped complex (β-CDMOF@SHPs). Furthermore, using the hydrophobic molecule curcumin as a model drug, we have demonstrated that SHPs@β-CDMOF and β-CDMOF@SHPs hybrid materials stabilize the included drug and have potential for controlled drug release. Collectively, the integration of MOF with polymer holds a great promise for drug delivery applications.
More
Translated text
Key words
Metal-organic frameworks,Hydrogel,Integration of metal-organic frameworks with,polymer,Release kinetics
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined