谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Approaching the Shockley-Queisser limit for fill factors in lead-tin mixed perovskite photovoltaics

JOURNAL OF MATERIALS CHEMISTRY A(2020)

引用 31|浏览28
暂无评分
摘要
The performance of all solar cells is dictated by charge recombination. A closer to ideal recombination dynamics results in improved performances, with fill factors approaching the limits based on Shockley-Queisser analysis. It is well known that for emerging solar materials such as perovskites, there are several challenges that need to be overcome to achieve high fill factors, particularly for large area lead-tin mixed perovskite solar cells. Here we demonstrate a strategy towards achieving fill factors above 80% through post-treatment of a lead-tin mixed perovskite absorber with guanidinium bromide for devices with an active area of 0.43 cm(2). This bromide post-treatment results in a more favorable band alignment at the anode and cathode interfaces, enabling better bipolar extraction. The resulting devices demonstrate an exceptional fill factor of 83%, approaching the Shockley-Queisser limit, resulting in a power conversion efficiency of 14.4% for large area devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要