Observations of mean and wave orbital flows in the ocean's upper centimetres

JOURNAL OF FLUID MECHANICS(2020)

引用 8|浏览6
暂无评分
摘要
Sophisticated measurements of fluid velocity near to an undulating air-water boundary have traditionally been confined to the laboratory setting. Developments in camera technology and the opening of novel modes of analysis have allowed for sensitive measurements of the current profile in the ocean's uppermost layer. Taking advantage of the Research Platform R/P FLIP as a `laboratory at sea', here we present first-of-their-kind thermal and polarimetric camera-based observations of wave orbital velocities and mean shear flows in the upper centimetres of the ocean surface layer. Measurements reveal a well-defined logarithmic layer as seen in laboratory measurements and described by classical surface layer theory; however, substantial spread of observations is found at low levels of wind forcing, where the Stokes drift of swell may have a substantial impact on the near-surface current profile. A novel application of short time window Fourier transforms allows for the estimation of near-surface wave orbital velocity magnitudes. These are found to be in general agreement with the prescriptions of linear wave theory, although observations diverge from theory at high levels of wind forcing where the interface is subject to surface wave breaking. Finally, the surface gravity wave phase-coherent short wave growth is presented and discussed in the context of hydrodynamic wave and airflow modulation.
更多
查看译文
关键词
air/sea interactions,surface gravity waves,wind-wave interactions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要