Chrome Extension
WeChat Mini Program
Use on ChatGLM

Electrodeposited Binder-Free Antimony-Iron-Phosphorous Composites as Advanced Anodes for Sodium-Ion Batteries

CHEMELECTROCHEM(2019)

Cited 6|Views16
No score
Abstract
The limited availability and rising cost of lithium have motivated research into sodium as an alternative ion for rechargeable batteries. However, anode development for such sodium-ion batteries (SIBs) has advanced slowly. Herein, novel binder-free ternary Sb-Fe-P composites were synthesized through a controllable electrodeposition method and were examined as prospective anode materials for sodium-ion batteries (SIBs). The Sb47Fe39P14 electrode exhibited a high desodiation capacity of 431.4 mA h g(-1) at 100 mA g(-1) with a capacity retention of 97.8% during the 200(th) cycle. Further, this anode delivered a high rate capacity (245.8 mA h g(-1) at 2000 mA g(-1)). The promising Na-ion storage, cycle and rate performance of the Sb47Fe39P14 electrode are mainly ascribed to the synergistic effect of its microstructure and active/inactive metal matrix. A kinetics investigation revealed that the rate capability of the Sb47Fe39P14 electrode can be attributed to the combination of primary pseudocapacitive and secondary solid-state diffusion contributions. The results of this study should enable the development of a controllable, scalable electrodeposition strategy and help explore other metallic composites with excellent lifespans and high rate capabilities for practical SIB applications.
More
Translated text
Key words
sodium-ion batteries,electroplating,metal phosphides,anode materials,Sb-Fe-P alloys
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined