Ionic Transport in Microhole Fluidic Diodes Based on Asymmetric Ionomer Film Deposits

CHEMELECTROCHEM(2018)

Cited 31|Views5
No score
Abstract
Microhole fluidic ionic diodes based on asymmetric deposits of charged ionomer membranes (e.g. Nafion or polymers of intrinsic microporosity) on microhole supports yield high rectification ratios for ionic transport. They are fabricated without the need for complex micro- or nanostructuring, and show potential for future applications in desalination and biosensing. Here, we propose an explanation for the functional principle for this type of materials-based ionic diode. A predictive computational model for ionic diode switching is based on finite element analysis. It is employed to determine the influence of diode geometry as well as type and concentration of aqueous electrolyte on the rectification behavior.
More
Translated text
Key words
fluidic diode,Poisson-Nernst-Planck,desalination,iontronics
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined