NEW ACOUSTICAL TECHNIQUE TO QUANTIFY METHANE EBULLITION IN SEDIMENT WATER COLUMN: A CASE STUDY IN THE LAPTEV SEA, THE ARCTIC OCEAN

BULLETIN OF THE TOMSK POLYTECHNIC UNIVERSITY-GEO ASSETS ENGINEERING(2018)

引用 1|浏览28
暂无评分
摘要
The relevance of the research is caused by the need to develop a scientifically based approach to quantitative estimation of bubble transfer of methane and other gases based on acoustic techniques, which allow reliable estimate of methane flow from the bubble unloading areas by sound locators and submarine sonars. The main aim of the research is to investigate the possible application of an acoustical technique based on acoustic scattering in bubble plumes vs the acoustical technique based on calibration which was applied to quantify in situ sonar observations; to show that both techniques can be used for a quantification of methane ebullition in the bottom-water column system. Objects: gas flares or seeps - the emanations of gas in the form of rising bubbles from the seabottom, which form stable regions of their increased concentration in the water column. Methods: modification of acoustical techniques based on acoustic scattering in bubble plumes and on ist calibration which was applied by authors to quantify in situ single sonar observations. Results. We demonstrate a first attempt to use acoustical techniques based on (1) acoustic scattering in bubble plumes vs acoustical technique based on (2) calibration which was applied to quantify in situ sonar observations. It has been shown that both techniques can be used for a quatitative express-evaluation of methane ebullition in the bottom-water system in any aquatic ecosystem including seas, lakes, and rivers, while the first acoustical technique gives the bubble efflux values -20 % lower then the second acoustical technique.
更多
查看译文
关键词
Arctic,acoustic estimation,methane,seep,Laptev sea,bubbles transport,methane flux
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要