Chrome Extension
WeChat Mini Program
Use on ChatGLM

Realization Of Opened And Closed Nodal Lines And Four- And Three-Fold Degenerate Nodal Points In Xpt (X = Sc, Y, La) Intermetallic Compound: A Computational Modeling Study

FRONTIERS IN CHEMISTRY(2020)

Cited 0|Views1
No score
Abstract
Realizing rich topological elements in topological materials has attracted increasing attention in the fields of chemistry, physics, and materials science. Topological semimetals/metals are classified into three main types: nodal-point, nodal-line, and nodal-surface types with zero-, one-, and two-dimensional topological elements, respectively. This study reports that XPt (X = Sc, Y, La) intermetallic compounds are topological metals with opened and closed nodal lines, and triply degenerate nodal points (TNPs) when the spin-orbit coupling (SOC) is ignored. Based on the calculated phonon dispersions, one can find that ScPt and YPt are dynamically stable whereas LaPt is not. When SOC is added, the one-dimensional nodal line and zero-dimensional TNPs disappear. Interestingly, a new zero-dimensional topological element, that is, Dirac points with 4-fold degenerate isolated band crossings with linear band dispersion appear. The proposed materials can be considered a good platform to realize zero- and one-dimensional topological elements in a single compound and to study the relationship between zero- and one-dimensional topological elements.
More
Translated text
Key words
4-fold degenerate nodal point, triply degenerate nodal point (TNP), spin-orbit coupling (SOC), topological element, phonon dispersion
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined