The Influence Of Summer Hypoxia On Sedimentary Phosphorus Biogeochemistry In A Coastal Scallop Farming Area, North Yellow Sea

SCIENCE OF THE TOTAL ENVIRONMENT(2021)

引用 15|浏览20
暂无评分
摘要
In situ field investigations coupled with laboratory incubations were employed to explore the surface sedimentary phosphorus (P) cycle in a mariculture area adjacent to the Yangma Island suffering from summer hypoxia in the North Yellow Sea. Five forms of P were fractionated, namely exchangeable P (Ex-P), iron-bound P (Fe-P), authigenic apatite (Ca-P), detrital P (De-P) and organic P (OP). Total P (TP) varied from 13.42 to 23.88 mu mol g(-1) with the main form of inorganic P (IP). The benthic phosphate (DIP) fluxes were calculated based on incubation experiments. The results show that the sediment was an important source of P in summer with similar to 39% of the bioavailable P (Bio-P) recycled back into the water column. However, the sediment acted a sink of P in autumn. The benthic DIP fluxes were mainly controlled by the remobilizing of Fe-P, Ex-P and OP under contrasting redox conditions. In August (hypoxia season), similar to 0.92 mu mol g(-1) of Fe-P and similar to 0.52 mu mol g(-1) of OP could be transformed to DIP and released into water, while similar to 0.36 mu mol g(-1) of DIP was adsorbed to clay minerals. In November (non-hypoxia season), however, similar to 0.54 mu mol g(-1) of OP was converted into DIP, while similar to 0.55 mu mol g(-1) and similar to 0.28 mu mol g(-1) of DIP was adsorbed to clay minerals and bind to iron oxides. Furthermore, scallop farming activities also affected the P mobilization through biological deposition and reduced hydrodynamic conditions. The burial fluxes of P varied from 11.67 to 20.78 mu mol cm(-2) yr(-1) and its burial efficiency was 84.7-100%, which was consistent with that in most of the marginal seas worldwide. This study reveals that hypoxia and scallop farming activities can significantly promote sedimentary P mobility, thereby causing high benthic DIP flux in coastal waters. (C) 2020 Elsevier B.V. All rights reserved.
更多
查看译文
关键词
Mariculture area, Coastal environment, Laboratory incubation, Phosphorus fractionation, Sediment analysis, Sequential extraction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要