Supervised classification of bradykinesia in Parkinson's disease from smartphone videos.

Artificial intelligence in medicine(2020)

引用 24|浏览29
暂无评分
摘要
BACKGROUND:Slowness of movement, known as bradykinesia, is the core clinical sign of Parkinson's and fundamental to its diagnosis. Clinicians commonly assess bradykinesia by making a visual judgement of the patient tapping finger and thumb together repetitively. However, inter-rater agreement of expert assessments has been shown to be only moderate, at best. AIM:We propose a low-cost, contactless system using smartphone videos to automatically determine the presence of bradykinesia. METHODS:We collected 70 videos of finger-tap assessments in a clinical setting (40 Parkinson's hands, 30 control hands). Two clinical experts in Parkinson's, blinded to the diagnosis, evaluated the videos to give a grade of bradykinesia severity between 0 and 4 using the Unified Pakinson's Disease Rating Scale (UPDRS). We developed a computer vision approach that identifies regions related to hand motion and extracts clinically-relevant features. Dimensionality reduction was undertaken using principal component analysis before input to classification models (Naïve Bayes, Logistic Regression, Support Vector Machine) to predict no/slight bradykinesia (UPDRS = 0-1) or mild/moderate/severe bradykinesia (UPDRS = 2-4), and presence or absence of Parkinson's diagnosis. RESULTS:A Support Vector Machine with radial basis function kernels predicted presence of mild/moderate/severe bradykinesia with an estimated test accuracy of 0.8. A Naïve Bayes model predicted the presence of Parkinson's disease with estimated test accuracy 0.67. CONCLUSION:The method described here presents an approach for predicting bradykinesia from videos of finger-tapping tests. The method is robust to lighting conditions and camera positioning. On a set of pilot data, accuracy of bradykinesia prediction is comparable to that recorded by blinded human experts.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要