Highlights of the High-Temperature Falling Particle Receiver Project: 2012-2016

C. K. Ho, J. Christian, J. Yellowhair, S. Jeter, M. Golob,C. Nguyen,K. Repole, S. Abdel-Khalik,N. Siegel,H. Al-Ansary,A. El-Leathy,B. Gobereit

AIP Conference Proceedings(2017)

引用 26|浏览5
暂无评分
摘要
A 1 MWt continuously recirculating falling particle receiver has been demonstrated at Sandia National Laboratories. Free-fall and obstructed-flow receiver designs were tested with particle mass flow rates of similar to 1 - 7 kg/s and average irradiances up to 1,000 suns. Average particle outlet temperatures exceeded 700 degrees C for the free-fall tests and reached nearly 800 degrees C for the obstructed-flow tests, with peak particle temperatures exceeding 900 degrees C. High particle heating rates of similar to 50 to 200 degrees C per meter of illuminated drop length were achieved for the free-fall tests with mass flow rates ranging from 1 - 7 kg/s and for average irradiances up to similar to 700 kW/m(2). Higher temperatures were achieved at the lower particle mass flow rates due to less shading. The obstructed-flow design yielded particle heating rates over 300 degrees C per meter of illuminated drop length for mass flow rates of 1 - 3 kg/s for irradiances up to similar to 1,000 kW/m(2). The thermal efficiency was determined to be similar to 60 - 70% for the free-falling particle tests and up to similar to 80% for the obstructed-flow tests. Challenges encountered during the tests include particle attrition and particle loss through the aperture, reduced particle mass flow rates at high temperatures due to slot aperture narrowing and increased friction, and deterioration of the obstructed-flow structures due to wear and oxidation. Computational models were validated using the test data and will be used in future studies to design receiver configurations that can increase the thermal efficiency.
更多
查看译文
关键词
particle receiver project,highlights high-temperature
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要