谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Influence of Compounding Technology on Rheological, Thermal and Mechanical Behavior of Blast Furnace Slag Filled Polystyrene Compounds

AIP Conference Proceedings(2017)

引用 0|浏览3
暂无评分
摘要
The influence of melt-compounding technique on blast furnace slags (BPS) filled polystyrene (PS) compounds was investigated. BFS are byproducts of iron industry, and are formed during the production of iron via thermo-chemical reduction in blast furnaces. BFS are mineral-structured materials composed of severeal such as silicon oxide (SiO2), calcium oxide (CaO), magnesium oxide (MgO) and alumina (Al2O3) as well as other minor oxides and elements. Such combination of oxides might be of technical advantage if BFS is properly prepared and tailored for use as a functional tiller for PS. In addition, BFS is outstandingly inexpensive and require minimal refining costs compared to common mineral fillers used in polymer industry such as calcium carbonate and talc, giving BFS an economic significance. In current study, compounds were produced via melt-compounding approach, where two different processing technologies were used: (1) Laboratory rotor-blade internal mixer (IM) and (2) co-rotating, twin-screw compounding extruder (ISC). It was found that compounding process did not yield a strong influence on the rheological properties, where comparable levels for shear viscosity, storage- and loss moduli were observed for all compounds except for '20G40 TSC' compound. Such deviancy was clear in thermal properties of this particular compound, where slightly lower transition temperature (T-g) as well as higher specific heat capacity (C-p) were reported. For mechanical behavior, comparable stress-strain curves and young's modulus values for both processes were witnessed. Deviant '20G40 TSC' compound showed slightly lower young's modulus compared to corresponding IM.
更多
查看译文
关键词
Blast furnace slag,process comparison,melt compounding,polystyrene
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要