Significance of nuclear LOXL2 inhibition in fibroblasts and myofibroblasts in the fibrotic process of acute respiratory distress syndrome.

European journal of pharmacology(2020)

引用 11|浏览18
暂无评分
摘要
Fibrotic scarring is an important prognostic factor of acute respiratory distress syndrome (ARDS). There are currently no antifibrotic drugs or other therapeutic agents for ARDS. Lysyl oxidase-like 2 (LOXL2), an amine oxidase, contributes to fibrotic scarring by facilitating collagen cross-linking. Recent clinical trials revealed that a monoclonal inhibitory antibody against LOXL2 failed to show benefit over placebo in patients with fibrotic disorders involving the lungs. These clinical results raise the possibility that targeting the extracellular enzymic activity of LOXL2 is not in itself sufficient to prevent fibrotic scarring. We investigated the role of LOXL2 in the pathogenesis of ARDS in vivo, in vitro, and in samples from patients with ARDS. After lung injury, LOXL2 was unevenly expressed in the nuclei of lung fibroblasts and myofibroblasts in the fibrotic phase. Nuclear LOXL2 expression was upregulated in lung fibroblasts after transforming growth factor-beta1 (TGF-β1)-treatment. LOXL2 silencing abrogated the TGF-β1-induced expression of a myofibrogenic-progenitor marker, the appearance of proto-myofibroblasts, and the evolution of differentiated myofibroblasts in lung fibroblasts. Nuclear upregulation of Snail was evident in myofibroblasts during the fibrotic phase after lung injury. We detected high levels of LOXL2 protein in the lungs of ARDS patients, specifically during the proliferative and fibrotic phases. Our results highlight nuclear LOXL2 in fibroblasts as a primary causative driver of cell-fate decision toward myofibroblasts and of the progression of fibrotic scarring. A nuclear-LOXL2-targeted agent could be a promising therapeutic strategy against fibrotic disorders including ARDS.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要