Chrome Extension
WeChat Mini Program
Use on ChatGLM

Rapid de novo evolution of lysis genes in single-stranded RNA phages

Karthik R. Chamakura, Jennifer S. Tran, Chandler O'Leary, Hannah G. Lisciandro, Sophia F. Antillon, Kameron D. Garza, Elizabeth Tran, Lorna Min, Ry Young

Nature communications(2020)

Cited 11|Views14
No score
Abstract
Leviviruses are bacteriophages with small single-stranded RNA genomes consisting of 3-4 genes, one of which (sgl) encodes a protein that induces the host to undergo autolysis and liberate progeny virions. Recent meta-transcriptomic studies have uncovered thousands of leviviral genomes, but most of these lack an annotated sgl, mainly due to the small size, lack of sequence similarity, and embedded nature of these genes. Here, we identify sgl genes in 244 leviviral genomes and functionally characterize them in Escherichia coli. We show that leviviruses readily evolve sgl genes and sometimes have more than one per genome. Moreover, these genes share little to no similarity with each other or to previously known sgl genes, thus representing a rich source for potential protein antibiotics. Leviviruses are phages with ssRNA genomes that encode a protein (Sgl) that induces host autolysis by interfering with bacterial cell wall synthesis. Identification of sgl genes is complicated by their small size and lack of sequence similarity. Here, Chamakura et al. use bioinformatic and experimental approaches to identify sgl genes in 244 leviviral genomes.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined