A new generation of direct X-ray detectors for medical and synchrotron imaging applications.

Scientific reports(2020)

引用 46|浏览10
暂无评分
摘要
Large-area X-ray imaging is one of the most widely used imaging modalities that spans several scientific and technological fields. Currently, the direct X-ray conversion materials that are being commercially used for large-area (> 8 cm × 4 cm without tiling) flat panel applications, such as amorphous selenium (a-Se), have usable sensitivities of up to only 30 keV. Although there have been many promising candidates (such as polycrystalline HgI2 and CdTe), none of the semiconductors were able to assuage the requirement for high energy (> 40 keV) large-area X-ray imaging applications due to inadequate cost, manufacturability, and long-term performance metrics. In this study, we successfully demonstrate the potential of the hybrid Methylammonium lead iodide (MAPbI3) perovskite-based semiconductor detectors in satisfying all the requirements for its successful commercialization in synchrotron and medical imaging. This new generation of hybrid detectors demonstrates low dark current under electric fields needed for high sensitivity X-ray imaging applications. The detectors have a linear response to X-ray energy and applied bias, no polarization effects at a moderate bias, and signal stability over long usage durations. Also, these detectors have demonstrated a stable detection response under BNL's National Synchrotron Light Source II (NSLS-II) 70 keV monochromatic synchrotron beamline.
更多
查看译文
关键词
Applied physics,Imaging,Materials for devices,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要