Fibrin clot properties to assess the bleeding phenotype in unrelated patients with hypodysfibrinogenemia due to novel fibrinogen mutations.

Thrombosis research(2020)

Cited 6|Views5
No score
Abstract
Congenital hypodysfibrinogenemia is a rare fibrinogen disorder, defined by decreased levels of a dysfunctional fibrinogen. We present the functional and structural characterization of two new fibrinogen variants. A duplication of 32 bases in FGA exon 5, p.Ser382GlyfsTer50 was identified in a patient (P1) with history of hemoptysis and traumatic cerebral bleeding. A missense mutation in FGG exon 8, p.Ala353Ser was identified in two siblings (P2 and P3) with tendency to bruising and menorrhagia. Fibrin polymerization was studied in plasma and in purified fibrinogen by turbidimetry. Fibrin structure was studied by a permeability assay, laser scanning confocal microscopy (LSCM) and scanning electron microscopy (SEM). In both plasma and purified fibrinogen samples, all patients had an abnormal polymerization characterized by a decreased maximal absorption compared to controls. The permeation constant (Ks) was markedly increased in all patients: 31 ± 9 × 10-9 cm2 in P1, and 20 ± 0.1 × 10-9 cm2 in P2 and P3, compared to 6 ± 2 × 10-9 cm2 in the control (p < 0.05). The presence of very large pores that accounts for the increased Ks was confirmed by LSCM and SEM patients' clots images. By SEM, the patients' fibrin fibers diameters were thicker: 90 ± 25 nm in P1, 162 ± 64 nm in P2 and 132 ± 46 nm in P3 compared to 74 ± 25 nm in control (p < 0.0001). In conclusion, both new causative fibrinogen mutations altered clot structure by forming thick fibers, diminishing fiber branching, and increasing pore filling space. These structural changes to clots explain the patients' bleeding phenotypes.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined