Yellow-fruited phenotype is caused by 573 bp insertion at 5' UTR of YFT1 allele in yft1 mutant tomato.

Plant science : an international journal of experimental plant biology(2020)

Cited 11|Views14
No score
Abstract
The yft1 tomato mutant has a yellow-fruited phenotype controlled by a recessive gene of YFT1 allele, which has been shown by map-based cloning to be a homolog of ETHYLENE INSENSITIVE 2 (EIN2). Genetic lesion of YFT1 allele in yft1 is attributed to a 573 bp DNA fragment (IF573) insertion at 1,200 bp downstream of the transcription start site. Transcriptomic analysis revealed that YFT1 lesion resulted in 5,053 differentially expressed genes (DEGs) in yft1 pericarp compared with the M82 wild type cultivar. These were annotated as being involved in ethylene synthesis, chromoplast development, and carotenoid synthesis. The YFT1 lesion caused a reduction in its own transcript levels in yft1 and impaired ethylene emission and signal transduction, delayed chromoplast development and decreased carotenoid accumulation. The molecular mechanism underlying the downregulated YFT1 allele in yft1 was examined at both RNA and DNA levels. The IF573 event appeared to introduce two negative regulatory sequences located at -272 to -173 bp and -172 to -73 bp in the YFT1 allele promoter, causing alterative splicing due to introduction of aberrant splicing sites, and breaking upstream open reading frames (uORF) structure in the 5'-UTR. Those results a new provided insight into molecular regulation of color formation in tomato fruit.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined