Numerical and Experimental Study of Multiphase Transient Core-Annular Flow Patterns in a Spouted Bed

JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME(2020)

引用 21|浏览9
暂无评分
摘要
Dense solid-gas bubbling systems with combined fluid-particle motion are among one of the most extensively used fluidization forms used in the chemical industry. Therefore, it is important to have a good understanding of the hydrodynamic behavior of bubbles. In this paper, both the experiment and numerical simulations are used to investigate the flow patterns in a spouted bed. For numerical simulations, the bidirectional coupling simulations using computational fluid dynamics (CFD) with discrete element method (DEM) are conducted. The results show that the simulations can accurately predict the bubbles morphology compared with the experimental results. When the number of particles is 30,000, only a single core-annular flow pattern appears. When the number of particles is increased to 36,500, the single bubble in the spouted bed transitions into two and a double core-annular flow pattern emerges. As the number of particles is increased to 43,000, a complex multicore-annular flow pattern appears. These flow patterns are also observed in the experiments using high-speed imaging camera. This paper analyzes and explains the causes of these flow phenomena from the dynamic characteristics of particle phase and fluid phase. These results have great significance in providing guidance for optimization of dense phase bubbling spouted beds.
更多
查看译文
关键词
spouted bed,computational fluid dynamics,discrete element method,core-annular flow,gas-solid flow,high-speed imaging,combustion of waste,fluidized bed,petroleum transport,pipelines,multiphase flow
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要