An Effective Edge-Assisted Data Collection Approach for Critical Events in the SDWSN-Based Agricultural Internet of Things

ELECTRONICS(2020)

Cited 30|Views9
No score
Abstract
In the traditional agricultural wireless sensor networks (WSNs), there is a large amount of redundant data and high latency on critical events (CEs) for data collection systems, which increases the time and energy consumption. In order to overcome these problems, an effective edge computing (EC) enabled data collection approach for CE in smart agriculture is proposed. First, the key features data types (KFDTs) are extracted from the historical dataset to keep the main information on CEs. Next, the KFDTs are selected as the collection data type of the software-defined wireless sensor network (SDWSN). Then, the event types are decided by searching the minimum average variance between the sensing data of active nodes and the average value of the key feature data obtained by EC. Furthermore, the sensing nodes are driven to sense the event-related data with a consideration of latency constraints by the SDWSN servers. A real-world testbed was set up in a smart greenhouse for experimental verification of the proposed approach. The results showed that the proposed approach could reduce the number of needed sensors, sensing time, collection data volume, communication time, and provide the low latency agricultural data collection system. Thus, the proposed approach can improve the efficiency of CE sensing in smart agriculture.
More
Translated text
Key words
data collection,wireless sensor networks,software-defined networks,edge computing,agricultural internet of things
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined