Experimental constraints on magnesium isotope fractionation during abiogenic calcite precipitation at room temperature

Geochimica et Cosmochimica Acta(2020)

Cited 13|Views9
No score
Abstract
Magnesium (Mg) isotopes in carbonate minerals are a useful proxy for paleoclimate studies, but interpretations are often limited by an inadequate understanding of the various factors controlling Mg isotopic fractionation during carbonate formation. Previous work has studied a number of parameters including aqueous chemistry, mineralogy, temperature, and precipitation rate. However, little is known about the impact of solid/solution ratio, calcite growth mechanism, and crystal morphology on isotope fractionation. In this work, two groups of seeded chemo-stat calcite precipitation experiments were conducted at 25 °C to explore the potential impact of crystal growth and morphology on the fractionation of Mg isotopes. Group-1 experiments (G1) contained nine individual runs that were performed under identical physicochemical conditions, except for solid/solution ratio and the length of an experiment. The isotope fractionation between precipitated calcite and aqueous solution is limited, with Δ26Mgcal-sol ranging from −2.58 to −2.40‰ and an average of −2.49 ± 0.12‰ (2SD, n = 9). The Group-2 experiments (G2) contained 3 paired runs with solution Mg/Ca molar ratios of 0.5, 2.0, and 5.0, and yielded Δ26Mgcal-sol values that ranged from −2.69 to −2.36‰ with an average of −2.62 ± 0.25‰ (2SD, n = 6).
More
Translated text
Key words
Carbonate,Crystal morphology,Magnesium isotopes,Equilibrium isotope fractionation,Chemo-stat
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined